四年級數學年齡問題例題解析
年齡問題是一類以“年齡為內容”的數學應用題。
年齡問題的主要特點是:二人年齡的差保持不變,它不隨歲月的流逝而改變;二人的年齡隨著歲月的變化,將增或減同一個自然數;二人年齡的倍數關系隨著年齡的增長而發生變化,年齡增大,倍數變小。
根據題目的條件,我們常將年齡問題化為“差倍問題”、“和差問題”、“和倍問題”進行求解。
例1 兒子今年10歲,5年前母親的年齡是他的6倍,母親今年多少歲?
分析與解:兒子今年10歲,5年前的年齡為5歲,那么5年前母親的年齡為5×6=30(歲),因此母親今年是
30+5=35(歲)。
例2 今年爸爸48歲,兒子20歲,幾年前爸爸的年齡是兒子的5倍?
分析與解:今年爸爸與兒子的年齡差為“48——20”歲,因為二人的年齡差不隨時間的變化而改變,所以當爸爸的年齡為兒子的5倍時,兩人的年齡差還是這個數,這樣就可以用“差倍問題”的解法。當爸爸的年齡是兒子年齡的5倍時,兒子的年齡是
(48——20)÷(5——1)=7(歲)。
由20-7=13(歲),推知13年前爸爸的年齡是兒子年齡的5倍。
例3 兄弟二人的年齡相差5歲,兄3年后的年齡為弟4年前的3倍。問:兄、弟二人今年各多少歲?
分析與解:根據題意,作示意圖如下:
由上圖可以看出,兄3年后的年齡比弟4年前的年齡大5+3+4=12(歲),由“差倍問題”解得,弟4年前的年齡為(5+3+4)÷(3-1)=6(歲)。由此得到
弟今年6+4=10(歲),
兄今年10+5=15(歲)。
例4 今年兄弟二人年齡之和為55歲,哥哥某一年的歲數與弟弟今年的歲數相同,那一年哥哥的歲數恰好是弟弟歲數的2倍,請問哥哥今年多少歲?
分析與解:在哥哥的歲數是弟弟的歲數2倍的那一年,若把弟弟歲數看成一份,那么哥哥的歲數比弟弟多一份,哥哥與弟弟的年齡差是1份。又因為那一年哥哥歲數與今年弟弟歲數相等,所以今年弟弟歲數為2份,今年哥哥歲數為2+1=3(份)(見下頁圖)。
由“和倍問題”解得,哥哥今年的歲數為
55÷(3+2)×3=33(歲)。
例5 哥哥5年前的年齡與妹妹4年后的年齡相等,哥哥2年后的年齡與妹妹8年后的年齡和為97歲,請問二人今年各多少歲?
分析與解:由“哥哥5年前的年齡與妹妹4年后的年齡相等”可知兄妹二人的年齡差為“4+5”歲。由“哥哥2年后的年齡與妹妹8年后的年齡和為97歲”,可知兄妹二人今年的年齡和為“97——2——8”歲。由“和差問題”解得,
兄[(97——2——8)+(4+5)]÷2=48(歲),
妹[(97——2——8)-(4+5)]÷2=39(歲)。
例6 1994年父親的年齡是哥哥和弟弟年齡之和的4倍。2000年,父親的年齡是哥哥和弟弟年齡之和的2倍。問:父親出生在哪一年?
分析與解:如果用1段線表示兄弟二人1994年的年齡和,則父親1994年的年齡要用4段線來表示(見下頁圖)。
父親在2000年的年齡應是4段線再加6歲,而兄弟二人在2000年的年齡之和是1段線再加2×6=12(歲),它是父親年齡的一半,也就是2段線再加3歲。由
1段+12歲=2段+3歲,
推知1段是9歲。所以父親1994年的年齡是9×4=36(歲),他出生于
1994——36=1958(年)。
例7今年父親的年齡為兒子的年齡的4倍,20年后父親的年齡為兒子的年齡的2倍。問:父子今年各多少歲?
解法一:假設父親的年齡一直是兒子年齡的4倍,那么每過一年兒子增加一歲,父親就要增加4歲。這樣,20年后兒子增加20歲,父親就要增加80歲,比兒子多增加了80-20=60(歲)。
事實上,20年后父親的年齡為兒子的年齡的2倍,根據剛才的假設,多增加的60歲,正好相當于20年后兒子年齡的(4——2=)2倍,因此,今年兒子的年齡為
(20×4-20)÷(4-2)-20=10(歲),
父親今年的年齡為10×4=40(歲)。
解法二:如果用1段線表示兒子今年的年齡,那么父親今年的年齡要用4段線來表示(見下圖)。
20年后,父親的年齡應是4段線再加上20歲,而兒子的年齡應是1段線再加上20歲,是父親年齡的一半,也就是2段線再加上10歲。由
1段+20=2段+10,
求得1段是10歲,即兒子今年10歲,從而父親今年40歲。
例8 今年爺爺78歲,長孫27歲,次孫23歲,三孫16歲。問:幾年后爺爺的年齡等于三個孫子年齡之和?
分析:今年三個孫子的年齡和為27+23+16=66(歲),爺爺比三個孫子的年齡和多78——66=12(歲)。每過一年,爺爺增加一歲,而三個孫子的年齡和卻要增加1+1+1=3(歲),比爺爺多增加3-1=2(歲)。因而只需求出12里面有幾個2即可。
解:[78-(27+23+16)]÷(1+1+1-1)=6(年)。
答:6年后爺爺的年齡等于三個孫子年齡的和。